

SEPARATING PRESENTATION AND CONTENT IN MEI

Laurent Pugin Johannes Kepper Perry Roland
Swiss RISM / Fribourg University
laurent.pugin@rism-ch.org

Edirom
kepper@edirom.de

University of Virginia
pdr4h@eservices.virginia.edu

Maja Hartwig

Andrew Hankinson

McGill University, Schulich School of Music
andrew.hankinson@mail.mcgill.ca

Edirom
maja.hartwig@gmx.de

ABSTRACT

Common Western music notation is traditionally orga-
nized on staves that can be grouped into systems. When
multiple systems appear on a page, they are arranged
from the top to the bottom of the page, similar to lines of
words in a text document. Encoding music notation doc-
uments for printing requires this arrangement to be cap-
tured. However, in the music notation model proposed
by the Music Encoding Initiative (MEI), the hierarchy of
the XML sub-tree representing the music emphasizes the
content rather than the layout. Since systems and pages
do not coincide with the musical content, they are encod-
ed in a secondary hierarchy that contains very limited
information. In this paper, we present a complementary
solution for augmenting the level of detail of the layout
of musical documents; that is, the layout information can
be encoded in a separate sub-tree with cross-references
to other elements holding the musical content. The major
advantage of the proposed solution is that it enables mul-
tiple layout descriptions, each describing a different vis-
ual instantiation of the same musical content.

1. INTRODUCTION

Common Western music notation is a system made up of
structured symbols organized upon a group of horizontal
lines, commonly called a “staff”, which acts as a bi-
dimensional reference system. The horizontal axis repre-
sents time while the vertical axis indicates pitch. Staves
can be grouped into systems, where the systems contain
concurrent streams of musical events aligned vertically
and where each staff encompasses a defined pitch range.
Systems are arranged across as many pages as necessary
to accommodate the musical content. When multiple sys-
tems appear on a page, multiple systems are arranged
from the top of the page to the bottom, similar to para-
graphs in a text document.

Numerous schemes have been developed for encoding

music notation [8]. Over the last decade, XML has been
increasingly used for defining encoding schemes, for ex-
ample, in the MusicXML1 interchange format [2] and the
IEEE15992 standard [6]. More recently, with a major re-
lease in 2010 and with the upcoming 2012 release, the
music notation model proposed by the Music Encoding
Initiative3 (MEI) has begun to take a leading role. Devel-
oped by a community of scholars, it acts as an extensible
music document encoding framework that can be custom-
ized for specific needs [5].1 2 3

For XML encoding schemes, such as MEI, that aim to
take into account the graphical context of the notation,
the organization of the notation into staves, systems, and
pages often needs to be captured. Whereas a page-based
approach will have the page at the top of the XML hierar-
chy, a content-based approach will place an element with
semantic meaning at the top of the hierarchy, relegating
the visual appearance to a secondary role. Music notation
itself is obviously multi-hierarchical, and both approaches
reflect valid perspectives. However, a basic principle of
XML design is that it requires a single hierarchy to be-
come the primary ordering mechanism of the music nota-
tion description. Other hierarchies inherent in music nota-
tion may then be implemented using alternative tech-
niques such as standoff markup.

Currently, MEI emphasizes the logical content of the
notation. For example, in the case of CMN, it employs
measures at the top of the hierarchy. Pages and systems
are captured using the same milestone technique that TEI
offers; that is, page and system breaks are represented by
the empty elements <pb/> and <sb/> respectively. It is
fairly easy to convert between measure-based and page-
based hierarchies using XSLT stylesheets, analogous to
MusicXML’s conversion between time-based and part-
based file organization. However, there are additional
complicating factors in the case of MEI. For example,
when multiple sources are described within a single en-
coding, which is a significant design goal of MEI, the
sources do not necessarily agree with regard to page and
system breaks. Furthermore, they might use a different

1 <http://www.makemusic.com/musicxml>
2 <http://www.mx.dico.unimi.it>
3 <http://www.music-encoding.org >

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
© 2012 International Society for Music Information Retrieval

score order or map instruments to staves differently. Even
the number of instruments or staves may differ between
multiple sources. Although MEI is currently capable of
dealing with these circumstances, the markup is often
verbose, repetitive, and difficult to comprehend quickly.
In this paper, we present a complementary module for
MEI that provides for more detailed capture of layout in-
formation and better separation of musical content and
visual presentation. The next section describes the objec-
tives pursued, followed by a section on related work. We
then present the module we developed for MEI and con-
clude the paper with remarks on future work.

2. OBJECTIVES

There are at least two use-cases that would benefit from
a clearer separation of layout-related information and the
musical content as proposed in this paper. The first use-
case is when precise descriptions in the encoding of ex-
isting source materials are required. A typical example is
the use of MEI as an output of and archival format for
optical music recognition (OMR) software applications
[4]. In such a use, it is necessary to be able to record the
exact position of the elements on the page. In OMR tran-
scriptions, each note, each music symbol, but also each
staff and each system requires its coordinate to be stored
in the MEI encoding. Diplomatic transcriptions with ex-
act coordinates are not only useful as interchange and
training data for adaptive OMR software applications,
but they can also be used in digital edition environments
for producing transcription image overlays. A diplomatic
transcription can be shown directly on top of the original
source, either for highlighting a particular aspect of the
source or simply for facilitating its readability. Examples
already exist for text editions [7], and a similar approach
for music could very well be envisaged with MEI.

Such a model would also serve the second use-case,
which is the preparation of different renditions from the
same musical material, the typical case being an edition
of the full score and, in parallel, an edition of the per-
formers’ parts. While it is relatively easy to extract parts
from a score encoded in MEI, there will always be cases
where human intervention will be required to finalize the
layout of the parts, whatever the automatic layout capa-
bilities of the rendering software application used. The
modifications can include additional dynamic markings,
lyrics, directives and similar musical information encoded
in nearby staves. The ideal solution is to encode only the
layout modifications applied to the parts so that addition-
al changes to the score would automatically be reflected
in the parts. This means that a <note> element for which
only the stem direction is changed in the layout need not
be duplicated. Features like this already exist in some
music notation software applications, such as in Sibeli-
us©, which includes a so-called Dynamic Parts™ func-
tionality. However, they are not designed to handle mul-
tiple sources. Having an option to record this type of lay-

out information in an optimized manner would certainly
be valuable.

2.1 Requirements

In order optimally to increase the level of detail of the
documents encoded in MEI, it is necessary to achieve a
solution that will not overload the logical sub-tree that
holds the musical content. When mingled with notation
content, page and system milestone markers complicate
the encoding of content. Adding more detailed layout
information, such as page size, results in further compli-
cation.

The solution should avoid overlapping hierarchy prob-
lems whenever possible. Page breaks and system breaks
embedded in the content sub-tree represent a non-
concurrent hierarchy. Multiple sources requiring different
presentation exacerbate the problem by creating multiple
instances of non-concurrent hierarchies.

Furthermore, it is important for the solution to limit
strictly the amount of duplicated data in the encoding. For
example, in the case of “score and parts” editions, when
the data for the parts duplicates that of the score, the
score data and the parts data may become desynchro-
nized. However, since the duration of a note in the parts
should be the same as in the score, employing a reference
system eliminates this possibility.

The proposed solution should not require the user to
choose between content-based or page-based approaches
but should supplement the current content-focused repre-
sentation of MEI instead. With that in mind it becomes
clear that the use of this additional layout information has
to be optional – for users, but also for applications. This
means that applications unaware of this proposal may
safely ignore it, that the additional information provided
by this proposal must leave the musical content sub-tree
untouched as much as possible, and that links added be-
tween the content and the layout elements must not pre-
clude the encoding and decoding of the musical content
on its own.

3. RELATED WORK

For some aspects, the problem described above is similar
to what is achieved by OMR software applications such
as Photoscore© that extend MusicXML in order to store
exact positioning information. However, it is done in a
non standard way and is application dependent. There are
also several standard existing encoding strategies and
formats that seem to be relevant to the problem described
above. The following section will introduce them briefly
and discuss their applicability for describing multiple
renditions or sources of the same musical content.

3.1 TEI Encoding Model for Genetic Editions

The aim of providing a detailed model of how content is
laid out on the page is similar to the goal pursued by the
TEI Workgroup on Genetic Editions [3]. Their model

essentially follows a document-centric approach, as op-
posed to the traditional text-centric approach for TEI.
The alternative hierarchy of this model privileges the
document and is organized as follows:

• Document

• Writing surface (page, double page, folium, etc.)
• Zone

• Text, lines or tables

The model is designed for encoding complex cases of
manuscripts in various stages of creation. Its purpose is to
trace and encode their genesis. In that regard, it is differ-
ent from what we hope to achieve for MEI because this
model aims principally for a chronological ordering of
zones in one document rather than transcribing or defin-
ing the layout of multiple documents separately.

Furthermore, the TEI encoding model for genetic edi-
tions is an alternative model for encoding a document. It
is not designed to be applied on top of an existing, tradi-
tional TEI encoding. Links are not maintained between
the textual content of the document and separately encod-
ed layout information. For this reason, some TEI projects
adopt a cumbersome double-encoding approach, with one
encoding for the representation of the source text(s) and a
second encoding for the documentary edition [1], which it
would be desirable to avoid.
3.2 XSL:FO

One of our design goals is to offer a method that pro-
vides a description of how the content of an encoding
should be presented. This mechanism must be capable of
describing different rendering outputs of the same musi-
cal content. XSL:FO (eXtensible Stylesheet Language:
Formatting Objects) appears to be useful in this context
as it allows a set of rules to be specified for the transfor-
mation of the content of an encoded document using a
defined page layout. For this purpose, it uses templates
which are instantiated as often as necessary during pro-
cessing, until the entire content is rendered. Using
XSL:FO <block> elements for systems, staves, and lay-
ers, the general layout of pages containing music nota-
tion can be described. XSL:FO can define the margins of
the page, padding between and size of systems and
staves, and so on.

Despite its initial promise, because XSL:FO is content-
agnostic it cannot be used to adjust the layout in response
to the content as required by music notation. For instance,
in opera or other equally large scores, it is quite common
that only the staves of the active voices or instruments be
present. This leads to variation in the size and content of
systems that is only achievable in XSL:FO by providing a
large number of separate templates for each distinct case.
Additionally, these templates need to be called explicitly
by the user, so that a fully automatic rendering of the con-
tent is no longer possible. Furthermore, XSL:FO does not

provide mechanisms for capturing the coordinate infor-
mation necessary for diplomatic transcription of the
sources. For these reasons, a template-driven language
such as XSL:FO is not suitable for the description of con-
tent-dependent layout.

3.3 Scalable Vector Graphics

Instead of using templates for laying out pages, a de-
scription of the already laid-out pages could be another
possibility. A legitimate approach for this would be to
use Scalable Vector Graphics (SVG) markup to describe
individual pages. There are already processors that gen-
erate SVG output from MEI markup. The problem with
using SVG, however, is that it makes it nearly impossi-
ble to maintain a connection to the logical content. Be-
cause the SVG markup represents the graphical primi-
tives of music notation (lines, note head shapes, etc.) and
not the semantic information, changes in the content re-
quire the primitives to be recalculated. For example, the
SVG markup for the representation of a beam would be
made up of filled parallelogram shapes, one for each
beam line, with their size and position on the page.
Changing the pitch of a single note within the <beam>
element in the MEI data would require the size and posi-
tion of all the graphical components of the beam to be
recomputed. Since SVG describes already-processed da-
ta, it is inappropriate for storing layout information in a
flexible way despite its utility as an output format.

4. THE MEI LAYOUT MODULE

As mentioned above, XSL:FO offers general instructions
on how to process data, whereas SVG is more appropri-
ate for already-processed data. The ideal solution for
MEI lies between the two: a description of what is in a
source, or what should appear on every page in a ren-
dered edition, without duplicating the content and with-
out requiring additional processing of the data.

4.1 General organization

A solution to this problem is to store the layout infor-
mation in a dedicated sub-tree separate from the musical
content. The sub-tree is represented by a <layoutGrp>
element within the <music> element. It may contain an
arbitrary number of <layout> elements, each of them de-
scribing a different visualization of the same musical
content.

For example, for the case illustrated in Figure 1 with
two sources A and B, the musical content of both sources
will be encoded following the traditional approach of
MEI, in a single hierarchy with <app> elements for en-
coding their differences. At the same time, each source
will be described further by its own layout sub-tree, if
need be in parallel with its related facsimile.

Figure 1. An example of two sources as organized with
the layout module in MEI. While they share the same
musical content, each layout is described in its own sub-
tree.

The <layout> element is expected to have a @type at-
tribute for indicating whether it is intended for “transcrip-
tion” or “rendering”. The <layout> element contains a
sequence of <page> elements, each with page-level
metadata and nesting <system>, <laidoutStaff> and
<laidoutLayer> child elements that can precisely repre-
sent how each of them is positioned on the page. The hi-
erarchy can be summarized as follows:

• layoutGrp

• layout (‘transcription’ or ‘rendering’)
• page

• system
• laidoutStaff

• laidoutLayer

At the lowest level, the <laidoutLayer> element con-

tains a list of <laidoutElement> children. Each
<laidoutElement> acts as a generic container that can re-
fer to any element within the corresponding <layer> ele-
ment in the musical content sub-tree.

The <system>, <laidoutStaff>, <laidoutLayer> and
<laidoutElement> elements all have attributes for storing
their coordinate position (@lrx, @lry, @ulx and @uly) in
“transcriptional” layouts.

4.2 Referencing system

The links that are established between the layout and the
elements in the musical content sub-tree are a keystone
of the module. Every <page> and <system> in the layout
sub-tree is linked to its related <pg> and <sb> elements
in the musical content sub-tree. In order to limit the mod-
ifications of the musical content sub-tree as much as pos-
sible, the links operate deliberately from the layout to-

wards the content, and not the reverse. Each <page> el-
ement is expected to have a @pbrefs attribute with the
list of XML IDs of <pb> elements in the musical content
sub-tree to which it applies, as illustrated in Figure 2.
Similarly, <system> elements have a @sbrefs attribute
containing a list of <sb> elements. Therefore, the correct
insertion of <pb> and <sb> elements is the only change
to the logical tree required for this proposal.

For the <laidoutStaff> and <laidoutLayer> elements,
the link with the musical content sub-tree is established
using a @staff attribute that refers to the @n attribute of a
<staff> element in the musical content sub-tree. Finally,
<laidoutElement> elements have a @target attribute for
referencing elements in the musical content sub-tree.

!

<music>
 <facsimile source="A">
 <!-- facsimile for source A -->
 </facsimile>
 <facsimile source="B">
 <!-- facsimile for source B -->
 </facsimile>
 <layoutGrp>
 <layout source="A" type="transcription">
 <page pbrefs="pb-A-1">
 <!-- the page layout in source A -->
 </page>
 </layout>
 <layout source="B" type="transcription">
 <page pbrefs="pb-B-1">
 <!-- the page layout in source B -->
 </page>
 </layout>
 </layoutGrp>
 <body>
 <mdiv>
 <score>
 <scoreDef barplace="mensur" key.sig="0">
 <staffGrp>
 <staffDef clef.shape="C" clef.line="3"/>
 </staffGrp>
 </scoreDef>
 <section>
 <staff n="1">
 <layer n="1">
 <pb xml:id="pb-A-1" source="A"/>
 <pb xml:id="pb-B-1" source="B"/>
 <sb xml:id="sb-A-1-1" source="A"/>
 <sb xml:id="sb-B-1-1" source="B"/>
 <!-- the musical content in A and B -->
 </layer>
 </staff>
 </section>
 </score>
 </mdiv>
 </body>
</music>

Figure 2. The scaffold encoding for the example given
in Figure 1. The <pb> elements in the score are refer-
enced from the <page> elements in the layout.

4.3 Overlapping hierarchies

As we have seen, a fundamental reason why it is advan-
tageous to keep the layout information in a separate sub-
tree is because the layout represents a distinct hierarchy
that might overlap with the content hierarchy. A typical
case is when a system break occurs in the middle of a
measure. In such a situation, the same system is indicat-
ed in MEI by several <sb> elements, one in every layer
where the system break occurs. The encoding in Figure 3
gives an example for such a case with a fictitious system
break introduced in the middle of measure number five.
In practice, this system break could be present in one or
more sources, or it could be desired in a specific render-

ing. Notice that there are two <sb> elements, one for
each layer.

As illustrated in Figure 4, in the corresponding layout
sub-tree of this example, the second system references the
two new <sb> elements via its @sbrefs attribute.

!

<measure n="5" xml:id="m5">
 <staff n="1" xml:id="m5s1">
 <layer n="1" xml:id="m5s1l1">
 <beam>
 <note xml:id="m5s1e1" pname="g" oct="5" dur="16"/>
 <note xml:id="m5s1e2" pname="f" oct="5" dur="16"/>
 <note xml:id="m5s1e3" pname="d" oct="6" dur="16"/>
 <note xml:id="m5s1e4" pname="c" oct="6" dur="16"/>
 </beam>
 <sb xml:id="sb-X-2-1" source="X"/>
 <beam>
 <note xml:id="m5s1e5" pname="b" oct="5" dur="16"/>
 <note xml:id="m5s1e6" pname="a" oct="5" dur="16"/>
 <note xml:id="m5s1e7" pname="g" oct="5" dur="16"/>
 <note xml:id="m5s1e8" pname="f" oct="5" dur="16"/>
 </beam>
 </layer>
 </staff>
 <staff n="2" xml:id="m5s2">
 <layer n="1" xml:id="m5s2l1">
 <note xml:id="m5s2e1" pname="d" oct="4" dur="4"/>
 <sb xml:id="sb-X-2-2" source="X"/>
 <rest xml:id="m5s2e2" dur="8" dots="1"/>
 <note xml:id="m5s2e3" pname="b" oct="3" dur="16"/>
 </layer>
 </staff>
 <slur staff="1" startid="#m5s1e1" endid="#m5s1e2"/>
</measure>
<sb xml:id="sb-Y-2-1" source=Y"/>

Figure 3. The customary encoding of measure 5 with an
additional internal <sb>. The beginning of the new sys-
tem is represented by two <sb> elements in the content
sub-tree.

!

<page n="1">
 <system n="1">
 <laidOutStaff staff="1">
 <laidOutLayer>
 <!-- previous measures -->
 <!-- first half of measure 5 -->
 <!-- musical content up to the sb -->
 </laidOutLayer>
 </laidOutStaff>
 <laidOutStaff staff="2">
 <laidOutLayer>
 <!-- previous measures -->
 <!-- first half of measure 5 -->
 <!-- musical content up to the sb -->
 </laidOutLayer>
 </laidOutStaff>
 </system>
 <system n="2" sbrefs="sb-X-2-1 sb-X-2-2">
 <laidOutStaff staff="1">
 <laidOutLayer>
 <!-- second half of measure 5 -->
 <!-- musical content from the sb -->
 <!-- next measures -->
 </laidOutLayer>
 </laidOutStaff>
 <laidOutStaff staff="2">
 <laidOutLayer>
 <!-- second half of measure 5 -->
 <!-- musical content from the sb -->
 <!-- next measures -->
 </laidOutLayer>
 </laidOutStaff>
 </system>
</page>

Figure 4. The proposed encoded layout for the example
given in Figure 3. The second <system> contains refer-
ences to the two <sb> elements.

4.4 Content selection

Implicitly, we expect the <laidoutLayer> element to in-
clude all elements contained in the corresponding <lay-
er> element of the musical content sub-tree. This means
that in the example illustrated by Figures 3 and 4, the
content of the measure will be rendered implicitly up to
the <sb> element for the system that ends in the middle
of measure five and from the <sb> element for the next
system. The use of <laidoutElement> for each element is
optional for rendering layouts, but it is required for tran-
scription layouts because in that case, we need to be able
to store the coordinate positions of the elements.

In some cases, however, a more granular way of se-
lecting content might be required. For example, it might
be necessary to hide an element in a specific layout. For
this purpose, the <laidoutElement> element has an
@ignore attribute.

The selection of content can also be performed at the
<laidoutStaff> level. For example, a layout for only one
staff in the score will have only a single <laidoutStaff>
element in each <system> element. Implicitly, all the oth-
er staves will not be included in that layout. Similarly, it
is possible to change the order of the staves in a specific
layout just by modifying the order of the <laidoutStaff>
elements.

4.5 Textual and layout variants

In MEI, all variants are traditionally encoded with <app>
and <rdg> elements in the music content sub-tree. In
some cases, however, variants do not necessarily repre-
sent a textual difference between the sources because the
musical content represented by the notation is identical.
In Figure 5, we can see two examples of the beginning of
Beethoven’s “Waldstein” sonata. The right hand is writ-
ten on the lower staff in the autograph and on the upper
staff in the edition of Breitkopf & Härtel. Traditionally,
this difference could be regarded as a variant in music
critical editing even though the musical content is actual-
ly the same. However, it would not be possible to “hear”
the difference between the two versions.

Autograph manuscript

Leipzig, Breitkopf & Härtel, (Serie 16, Plate B.144)

Figure 5. The beginning of Beethoven’s “Waldstein” so-
nata No. 21. The right hand is written on the lower staff
in the manuscript and on the upper one in the edition.

The layout module is designed in such a way that it is
possible to encode purely presentational differences be-
tween sources at the layout level. In the <laidoutStaff>
element, following a content selection method as de-
scribed above, it is possible to retrieve content from an-
other staff of the musical content sub-tree. In our example,
this means that the lower <laidoutStaff> in the layout of
the manuscript would pull the content from the first staff,
assuming that the music content is encoded as in the edi-
tion. Even at its current experimental stage, this practice
could represent a significant conceptual change in critical
editing. The layout encoding itself becomes the way to
represent layout variants, reserving the traditional <app>
and <rdg> elements in the musical content sub-tree for
textual differences.

5. CONCLUSION AND FUTURE WORK

We believe that the proposed solution is a novel method
of encoding MEI documents because it creates a separa-
tion between the content of music notation and its possi-
ble realizations. Multiple realizations of the same musi-
cal content can be stored in parallel, each with its own
specific layout information. The layout information can
also provide additional functionality. It can be used for
specifying how the content appears in an already-
existing source, but it can also be used for specifying
how the content must be rendered when creating a new
edition. The first use is particularly interesting for OMR
software applications and for producing image overlays
for displaying a transcription directly on top of the fac-
simile image of the original source. The second use is
particularly convenient for storing refined layout infor-
mation for the parts of an encoded full score. The pro-
posed module lays the basis for a new way of organizing
the information contained in an existing MEI encoding.

This approach, however, also raises an interesting
question regarding the line between content and presenta-
tion in music notation that we hope will receive more at-
tention. There is clearly no fixed border because in music
notation layout is a constituent component. The proposed
layout module does not attempt to define an absolute
boundary, but is intended to be flexible. In practice, the
more varied the layout of the sources and the more de-
tailed the layout information recorded, the less it will be
desirable to keep layout information in the musical con-
tent sub-tree as has been MEI practice so far. With these
changes, the musical content sub-tree may become a
more abstract representation of the music.

The next step will be to finalize the module in prepara-
tion for the next official release of MEI, including prepar-
ing guidelines for its usage. We also expect to have to
add more features at the <laidoutElement> level depend-
ing on thorough testing. For example, it would be logical
to expect the module to handle the transposition of in-
struments when generating parts.

Because creating an encoding with multiple layouts in
a general purpose XML editor will be unmanageable,
tools that implement at least some of the features of this
new module will be a high priority. Currently, the module
is being implemented in the Aruspix software application,
which will be used for prototyping and providing some
more actual examples.

The authors believe that this proposal has great poten-
tial to enhance MEI’s interoperability, to accelerate its
further adoption by the scholarly community, and thus to
reinforce its leading role in the digital humanities.

5.1 Availability

The module is available in the incubator of the MEI pro-
ject.1 It needs to be compiled with the Roma processor
[5].

6. REFERENCES

[1] G. Brüning, K. Henzel, and D. Pravida: “Rationale
of multiple encoding in the genetic Faust edition,”
Journal of the Text Encoding Initiative,
[Forthcoming].

[2] M. Good and G. Actor: “Using MusicXML for file
interchange,” Proceedings of the 3rd International
Conference on WEB Delivering of Music, p. 153,
2003.

[3] F. Jannidis (chair): “An encoding model for genetic
editions,” http://www.tei-c.org/Activities/Council/
Working/tcw19.html 2011.

[4] A. Hankinson, L. Pugin, and I. Fujinaga: “An
interchange format for optical music recognition
applications,” Proceedings of the 11th International
Conference on Music Information Retrieval, pp. 51–
56, 2010.

[5] A. Hankinson, P. Roland, and I. Fujinaga: “The
music encoding initiative as a document-encoding
framework,” Proceedings of the 12th International
Conference on Music Information Retrieval, pp.
293–298, 2011.

[6] L. A. Ludovico: “Key concepts of the IEEE 1599
standard,” Proceedings of the IEEE CS Conference:
The Use of Symbols to Represent Music and
Multimedia Objects, p. 15–26, 2008.

[7] D. Oberhelman: “Quijote Interactivo (Interactive
Quixote),” Reference Reviews, Vol. 25 No. 5, pp.
33–34, 2011.

[8] E. Selfridge-Field: Beyond MIDI: The Handbook of
Musical Codes, MIT Press, Cambridge MA, 1997.

1 <http://code.google.com/p/mei-incubator/source/browse/>

	Papers
	Poster Session 3
	SEPARATING PRESENTATION AND CONTENT IN MEI

